Abstract Factory


We’re adding yet another factory pattern to our pattern family, one that lets us create families  of products. Let’s check out the official definition for this pattern:

The Abstract Factory Pattern provides an interface for creating families of related or dependent objects without specifying their concrete classes.

We’ve certainly seen that Abstract Factory allows a client to use an abstract interface to create a set of related products without knowing (or caring) about the concrete products that are actually produced. In this way, the client is decoupled from any of the specifi cs of the concrete products. Let’s look at the class diagram to see how this all holds together: d1   The classes that participate to the Abstract Factory pattern are:

  • AbstractFactory – declares a interface for operations that create abstract products.
  • ConcreteFactory – implements operations to create concrete products.
  • AbstractProduct – declares an interface for a type of product objects.
  • Product – defines a product to be created by the corresponding ConcreteFactory; it implements the AbstractProduct interface.
  • Client – uses the interfaces declared by the AbstractFactory and AbstractProduct classes.

The AbstractFactory class is the one that determines the actual type of the concrete object and creates it, but it returns an abstract pointer to the concrete object just created. This determines the behavior of the client that asks the factory to create an object of a certain abstract type and to return the abstract pointer to it, keeping the client from knowing anything about the actual creation of the object. The fact that the factory returns an abstract pointer to the created object means that the client doesn’t have knowledge of the object’s type. This implies that there is no need for including any class declarations relating to the concrete type, the client dealing at all times with the abstract type. The objects of the concrete type, created by the factory, are accessed by the client only through the abstract interface. The second implication of this way of creating objects is that when the adding new concrete types is needed, all we have to do is modify the client code and make it use a different factory, which is far easier than instantiating a new type, which requires changing the code wherever a new object is created. d1

BULLET POINTS

  • All factories encapsulate object creation.
  • Simple Factory, while not a bona fide design pattern, is a simple way to decouple your clients from concrete classes.
  • Factory Method relies on inheritance: object creation is delegated to subclasses which implement the factory method to create objects.
  • Abstract Factory relies on object composition: object creation is implemented in methods exposed in the factory interface.
  • All factory patterns promote loose coupling by reducing the dependency of your application on concrete classes.
  • The intent of Factory Method is to allow a class to defer instantiation to its subclasses.
  • The intent of Abstract Factory is to create families of related objects without having to depend on their concrete classes.
  • The Dependency Inversion Principle guides us to avoid dependencies on concrete types and to strive for abstractions.
  • Factories are a powerful technique for coding to abstractions, not concrete classes

Applicability & Examples

We should use the Abstract Factory design pattern when:

  • the system needs to be independent from the way the products it works with are created.
  • the system is or should be configured to work with multiple families of products.
  • a family of products is designed to work only all together.
  • the creation of a library of products is needed, for which is relevant only the interface, not the implementation, too.

Phone Number Example

The example at the beginning of the article can be extended to addresses, too. The AbstractFactory class will contain methods for creating a new entry in the information manager for a phone number and for an address, methods that produce the abstract products Address and PhoneNumber, which belong to AbstractProduct classes. The AbstractProduct classes will define methods that these products support: for the address get and set methods for the street, city, region and postal code members and for the phone number get and set methods for the number.

The ConcreteFactory and ConcreteProduct classes will implement the interfaces defined above and will appear in our example in the form of the USAddressFactory class and the USAddress and USPhoneNumber classes. For each new country that needs to be added to the application, a new set of concrete-type classes will be added. This way we can have the EnglandAddressFactory and the EnglandAddress and EnglandPhoneNumber that are files for English address information.

Pizza Factory Example

Another example, this time more simple and easier to understand, is the one of a pizza factory, which defines method names and returns types to make different kinds of pizza. The abstract factory can be named AbstractPizzaFactory, RomeConcretePizzaFactory and MilanConcretePizzaFactory being two extensions of the abstract class. The abstract factory will define types of toppings for pizza, like pepperoni, sausage or anchovy, and the concrete factories will implement only a set of the toppings, which are specific for the area and even if one topping is implemented in both concrete factories, the resulting pizzas will be different subclasses, each for the area it was implemented in.

Look & Feel Example

Look & Feel Abstract Factory is the most common example. For example, a GUI framework should support several look and feel themes, such as Motif and Windows look. Each style defines different looks and behaviors for each type of controls: Buttons and Edit Boxes. In order to avoid the hardociding it for each type of control we define an abstract class LookAndFeel. This calls will instantiate, depending on a configuration parameter in the application one of the concrete factories: WindowsLookAndFeel orMotifLookAndFeel. Each request for a new object will be delegated to the instatiated concrete factory which will return the controls with the specific flavor

Abstract Factory Example - UML Class Diagram

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: